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Abstract:  

This paper presents a hybrid Convolutional Neural Network-Long Short-Term Memory 

(CNN-LSTM) approach for Automatic Speech Recognition (ASR) using deep learning 

techniques on the Aurora-2 dataset. The dataset includes both clean and multi-condition 

modes, encompassing four noise scenarios : subway, babble, car, and exhibition hall, each 

evaluated at different signal-to-noise ratios (SNRs), and clean condition, and the results are 

compared with those from the ASC-10 dataset and the ESC-10 dataset. The problem 

addressed is the need for robust ASR models that perform well in both clean and noisy 

environments. The aim of utilizing the CNN-LSTM architecture is to enhance the recognition 

performance by combining the strengths of CNNs and LSTMs, rather than relying on either 

CNNs or LSTMs alone. Experimental results demonstrate that the combined CNN-LSTM 

model achieves superior classification performance, in clean environments on the Aurora2 

dataset, attaining an accuracy of 97.96%, surpassing the individual CNN and LSTM models, 

which achieved 97.21% and 96.06%, respectively. In noisy conditions, the hybrid model 

also outperforms the standalone models, with an accuracy of 90.72%, compared to 90.12% 

for CNN and 86.12% for LSTM. These findings indicate that the CNN-LSTM model is more 

effective in handling various noise conditions and improving overall ASR accuracy. 
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 لتحسين التعرف على الكلام النظيف والصاخب  CNN-LSTMدمج تقنية 

 لخص: الم

 (ASR) للتعرف الآلي على الكلام (CNN-LSTM) تخص هذه الورقة البحثية نهجًا هجينًا للشبكة العصبية التلافيفية والذاكرة طويلة المدى القصيرة

 من الوضعين النظيف ومتعدد الشروط، وتشمل أربعة   .Aurora-2 باستخدام تقنيات التعلم العميق على قاعدة بيانات
ً

تتضمن قاعدة البيانات كلا

مختلفة، وحالة  (SNRs) سيناريوهات للضوضاء: مترو الأنفاق، والثرثرة، والسيارة، وقاعة المعرض، يتم تقييم كل منها عند نسب إشارة إلى ضوضاء

تمت معالجتها    المشكلة التي  .ESC-10 وقاعدة البيانات ASC-10 نظيفة لا تحتوي على ضوضاء، ويتم مقارنة النتائج بتلك الموجودة في قاعدة البيانات

توي على  في هذه الدراسة هي الحاجة إلى نماذج قوية للتعرف الآلي على الكلام التي تعمل بشكل جيد في كل من البيئات النظيفة والصاخبة )التي تح

،  LSTMsو  CNNs هو تحسين أداء التعرف من خلال الجمع بين نقاط القوة في كل من النماذج CNN-LSTM ضوضاء(. والهدف من استخدام بنية

 من الاعتماد على
ً
ظهِر النتائج التجريبية أن نموذج LSTMs أو CNNs بدلا

ُ
المدمج يحقق أداء تصنيف مرتفع جدا، في البيئات  CNN-LSTM وحدها. ت

البيانات عندما تأخذ فرديا، والتي حققت    LSTMو  CNN % من الدقة، متجاوزًا نماذج97.96، حيث حقق نسبة  Aurora2 النظيفة على قاعدة 

 % لـ90.12%، مقارنة بـ  90.72% على التوالي. في الظروف الصاخبة، يتفوق النموذج الهجين أيضًا على النماذج المستقلة، بدقة  96.06% و 97.21

CNN  لـ86.12و % LSTM  في النهاية، تشير هذه النتائج إلى أن نموذج    CNN-LSTM   أكثر فعالية في التعامل مع ظروف الضوضاء المختلفة وتحسين

 .دقة التعرف على الكلام بشكل عام

 CNN -LSTM  - DNN .SNR  - - الكلام الصاخب - الكلام النظيف-   CNN - -  LSTM التعرف الآلي على الكلامفتاحية: مكلمات 

 

Combinaison CNN-LSTM combiné pour améliorer la reconnaissance vocale propre et 
bruyante 

Résumé : 

Cet article présente une approche hybride de réseau neuronal convolutionnel et de mémoire à long terme 
(CNN-LSTM) pour la reconnaissance automatique de la parole (ASR) utilisant des techniques 
d'apprentissage profond sur la base de données Aurora-2. Cette base de données comprend des modes 
propres et multi-conditions, englobant quatre scénarios de bruit : métro, babillage, voiture et hall 
d'exposition, chacun évalué à différents rapports signal/bruit (SNR) et condition propre, et les résultats sont 
comparés à ceux de l'ensemble de données ASC-10 et de la base de données ESC-10. Le problème abordé 
est le besoin de modèles ASR robustes qui fonctionnent bien dans les environnements bruités et non bruités 
(propres). L'objectif de l'utilisation de l'architecture CNN-LSTM est d'améliorer les performances de 
reconnaissance en combinant les points forts des CNN et des LSTM, plutôt que de s'appuyer uniquement 
sur les CNN ou les LSTM pris en isolés. Les résultats expérimentaux démontrent que le modèle combiné 
CNN-LSTM atteint de hautes performances de classification, dans des environnements non bruités sur 
l'ensemble de données Aurora2, atteignant une précision de 97,96 %, surpassant les modèles CNN et LSTM 
pris individuellement, qui ont atteint respectivement 97,21 % et 96,06 %. Dans des conditions bruitées, le 
modèle hybride surpasse également les deux modèles cités, avec une précision de 90,72 %, contre 90,12 % 
pour CNN et 86,12 % pour LSTM. Ces résultats indiquent que le modèle hybride CNN-LSTM est plus 
efficace pour gérer diverses conditions de bruit et améliorer la précision globale du taux de reconnaissance 
de la parole. 

Mots clés: ASR - CNN - LSTM - Parole propre - Parole bruitée - CNN-LSTM - DNN - SNR. 
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INTRODUCTION 

Automatic speech recognition (ASR) systems convert spo- ken language into text, playing a crucial 

role in various applications. As the need for ASR services rises, it is essential to address the 

challenges of noise and distortion, which can greatly affect the performance of these systems 

(Djeffal et al., 2023). Deep learning (DL) technologies, particularly convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) net- works (Selouani & Yacoub, 2018), have made 

significant strides in enhancing ASR capabilities. These models excel in processing and 

interpreting human speech, offering improved performance over traditional methods. CNN 

effectively capture structural locality within the feature space and mitigate translational variance 

(Mazari & Kheddar, 2023). They manage disturbances and minor shifts in the feature space 

through pooling over local frequency regions, taking advantage of long-term dependencies among 

speech frames by utilizing prior knowledge of speech signals. However, it has been observed that 

CNNs encounter difficulties when dealing with semi-clean data in ASR systems, leading to 

performance degradation. In contrast, RNN capture long contexts and offer higher recognition 

accuracy, particularly for noise-robust tasks. However, RNNs face limitations due to the 

vanishing and exploding gradient problem, which impede their capability to learn temporal 

dependencies. To address these issues, long short-term memory (LSTM) networks were 

developed, featur ing memory blocks that control the flow of information (Kamilya & Pappachen, 

2019). LSTM-RNNs, however, tend to be sensitive to static data, leading to delays between inputs 

and corresponding outputs. For acoustic modeling, low latency is preferred, consequently, an 

architecture that processes input sequences in both directions. known as bidirectional LSTM 

(BLSTM), was introduced to make more informed decisions. Deep LSTM-RNNs are created by 

stacking multiple LSTM-RNN (Kheddar et al., 2024). This deep structure allows for optimal 

parameter utilization by distributing them across multiple layers. As a result, it have demonstrated 

impressive performance in large vocabulary speech recognition tasks (Passricha & Aggarwal, 

2019) CNN-LSTM architectures combine the strengths of CNNs and LSTMs (Dar & Pushparaj, 

2024). CNNs excel in extracting spatial features from input sequences, while LSTMs are adept at 

capturing contextual dependencies and temporal dynamics over time. This integration proves 

invaluable in tasks requiring a comprehensive understanding of both local features and long- term 

relationships, such as video analysis, medical signal processing, and ASR in noisy environments. 

The collaboration between CNNs and LSTMs has driven significant advancements across 

diverse fields (Wang et al., 2020), enhancing the accuracy and robustness of predictions by 

effectively learn- ing from intricate sequential data. This introduction lays the groundwork for 

exploring the design, training, and application of CNN-LSTM architectures in various domains, 

addressing complex challenges in sequence learning tasks. This study aims to propose and evaluate 

CNN and LSTM models, as well as a hybrid CNN-LSTM architecture (Gueriani et al., 2024), in 

the aim to improve ASR performance in noisy environments. The experiments are conducted using 

the Aurora-2 dataset (Hirsh & Pearce., 2000), which includes various noise scenarios and signal-

to-noise ratios (SNRs) (Naing et al., 2020) and are compared with the ASC-10 and ESC-10 

datasets. Our contributions are structured as follows: 

• Propose a CNN model in both clean and noisy modes. 

• Propose an LSTM model in both clean and noisy modes. 

• Compare the proposed CNN-LSTM hybrid model with individual CNN and LSTM models. 

• Compare the Aurora-2 dataset with the ASC-10 and ESC- 10 datasets. 
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1. BACKGROUND 

 

Deep learning, a specialized area within machine learning, employs multi-layered neural networks 

to capture intricate patterns in data. This approach has significantly contributed to progress in 

various domains, including image and speech recognition, natural language processing, and 

autonomous systems. Among the core architectures in deep learning are CNNs, Deep Neural 

Networks (DNNs) (Exter & Meyer, 2016), and LSTM networks. CNNs are a cornerstone of deep 

learning, particularly excelling in tasks such as image and audio recognition, where data has a 

structured form. Unlike traditional fully connected networks, CNNs are built with convolutional 

and pooling layers, which are stacked sequentially (Kheddar et al., 2024). The convolutional layers 

apply filters to the input, each acting as a feature detector that iden- tifies patterns like edges, 

textures, and shapes. This process produces feature maps, capturing the spatial hierarchies in the 

data. By using shared weights for these filters, CNNs reduce the number of parameters, improving 

computational efficiency and mitigating overfitting. The shared-weight structure also allows the 

network to recognize patterns across different loca- tions, making it more robust. Pooling layers, 

which typically follow convolutional layers, reduce the dimensionality of the feature maps through 

down-sampling. Techniques like max pooling and average pooling are common, helping retain 

im- portant information while discarding less relevant details. This dimensionality reduction serves 

several purposes, it lowers computational complexity, enhances the model’s ability to generalize to 

new data, and reduces overfitting by emphasizing key features. Together, the convolutional and 

pooling layers allow CNNs to progressively capture spatial features, from basic elements like 

edges to complex structures, making them especially effective in domains like image and speech 

recognition (Djeffal et al., 2023).  

In contrast, LSTM networks are designed for sequential data, excelling in capturing temporal 

relationships (Li et al., 2015). LSTMs introduce three types of input gates, output gates, and forget 

gates that regulate the flow of information, allowing the network to decide which information 

to remember or discard. This mechanism enables LSTMs to capture both short- term and long-term 

dependencies, which is essential for tasks like speech and language processing, where the meaning 

of words or sounds depends on previous context (Greg et al., 2020). LSTMs can handle 

sequences of varying lengths while maintaining a consistent input-output size, making them highly 

versatile for time-dependent tasks. However, traditional LSTMs are uni- directional, meaning they 

process data from past inputs only and ignore future context. This can limit their effectiveness for 

tasks that require understanding of context in both directions, such as certain pattern recognition 

tasks where bidirectional context is valuable. The unidirectional nature of LSTMs can also increase 

their susceptibility to overfitting, especially in complex or noisy environments where subtle 

temporal patterns need to be captured and maintained (Passricha & Aggarwal, 2019). 

To overcome these limitations, CNNs and LSTMs are often combined to leverage the strengths 

of both. CNNs excel at extracting spatial features from raw data, which is particularly useful for 

tasks involving images and sound, while LSTMs are adept at modeling temporal dependencies 

in sequences. The CNN layers process the input to generate feature maps that highlight spatial 

patterns, which are then passed to the LSTM layers to model temporal dependencies. This hybrid 

CNN-LSTM architecture (Passricha & Aggarwal, 2019) is effective at capturing intricate 

spatiotemporal patterns that individual models struggle to capture on their own. This approach has 

been successful in fields such as video analysis, speech recognition, and sensor data processing, 



                                                                    Noussaiba Djeffal, Hamza Kheddar, Djamel Addou, Sid Ahmed Selouani 

9 
 

where both spatial and temporal information are crucial for accurate predictions. 

In our study, we developed a CNN-LSTM model tailored to improve recognition performance 

in noisy environments. The CNN component serves as a feature extractor, identifying local 

patterns within each audio frame. These features are then fed into the LSTM component, which 

captures the temporal relationships between frames and models how audio features evolve over 

time. By combining CNNs ability to extract patterns with LSTMs capacity for sequential data 

processing, this architecture is particularly well-suited for tasks like ASR, where both spatial 

(spectral features) and temporal (phonetic context) factors are critical. Furthermore, integrating 

CNN and LSTM layers (Wu al., 2018) allows the model to retain long-term dependencies while 

maintaining short-term pattern recognition. This hybrid approach enhances both the accuracy and 

robustness of the model, particularly in noisy environments where the model must filter out 

irrelevant information. CNN- LSTM hybrid models (Daouad et al., 2023) have been shown to 

achieve significant improvements in various domains, effectively balancing feature extraction with 

sequence modeling. As a result, this architecture enhances the model’s ability to generalize well 

to different environments, a crucial trait for real-world ASR applications (Xie et al., 2020). The 

development of hybrid models such as CNN-LSTM represents a significant step forward in tasks 

that require spatiotemporal understanding. By combining CNNs ability to detect local patterns with 

LSTMs ability to manage temporal dependencies, this model offers a comprehensive solution for 

ASR in noisy settings. This study highlights the potential of hybrid models to improve recognition 

accuracy while adapting to challenging, real-world conditions, providing a foundation for further 

advances in noise-robust ASR systems. 

2. RELATED LITERATURE 

The combination of CNN and LSTM has attracted significant interest from researchers. In 

(Passricha & Aggarwal, 2019) the authors propose a hybrid CNN-BLSTM architecture for 

acoustic modeling in ASR to leverage both spectral and temporal properties of speech signals, 

improving continuous speech recognition. They explore methods such as weight sharing, 

optimizing the number of hidden units, pooling strategies, and the effectiveness of BLSTM layers. 

Additionally, they address the limitation of CNNs in modeling speaker-adapted features and 

examine various non-linearities with dropout. Their experiments demonstrate a 5.8% and 10% 

relative decrease in WER over CNN and DNN systems, respectively, when incorporating speaker-

adapted features and maxout non-linearity with dropout. However, our study contributes to the 

discussion by specifically tackling the challenges presented by noisy environments in ASR. We 

employ a hybrid CNN-LSTM model designed for various noise scenarios, combined with robust 

performance metrics in both clean and noisy settings. This approach provides a more thorough 

understanding of ASR. While the authors concentrate on optimizing acoustic modeling 

architectures, our research expands on this by exploring the real-world implications of techniques 

like weight sharing and pooling strategies. This highlights the necessity of adapting models to 

different acoustic conditions. Additionally, whereas the authors demonstrate improvements in 

word error rate (WER) through the use of speaker-adapted features, our results reveal substantial 

performance gains in both clean and noisy environments, emphasizing the robustness of our 

model. This broader perspective not only showcases the effectiveness of our approach but also 

underscores the importance of resilience in ASR systems, distinguishing our study in the field. 

Our study and the research presented in (Alsayadi et al., 2021) both employ CNN-LSTM 

architectures to enhance ASR performance, yet they differ significantly in focus and approach. 
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The study in (Alsayadi et al., 2021) targets Arabic speech recognition, concentrating on the impact 

of diacritics on accuracy. Utilizing CNN-LSTM and attention-based techniques within the 

Espresso framework, it achieves a 13.52% reduction in WER and improves language model 

performance when trained on non-diacritized data from the SASSC corpus. In contrast, our work 

prioritizes robustness to environmental noise instead of linguistic features. We rigorously evaluate 

our CNN-LSTM model on the Aurora- 2 dataset, which includes clean speech as well as multiple 

noisy scenarios, such as subway, babble, car, and exhibition hall noises at various signal-to-noise 

ratios. Our results demonstrate that our hybrid model excels in noisy conditions, high- lighting its 

effectiveness in real-world applications compared to models designed for clean or language-

specific contexts. This comparison underscores the unique contributions of each study, while 

(Alsayadi et al., 2021) focuses on resolving linguistic challenges in Arabic ASR, our research 

emphasizes the model’s resilience to diverse environmental noise. 

In (Dat et al., 2020), the authors propose a hybrid CNN-BLSTM model with an attention 

mechanism for Vietnamese speech recognition in noisy operating room environments. This 

architecture combines CTC and attention loss functions to enhance alignment accuracy and 

accelerate label sequence estimation during both training and inference. Evaluation on real surgery 

room data shows a notable 13.05% reduction in WER indicates substantial improvements in ASR 

system performance. Our study demonstrates several significant improvements over the research 

presented in (Dat et al., 2020). While both studies utilize hybrid neural network architectures to 

enhance ASR performance in noisy environments, our work evaluates a broader range of noise 

conditions. The study in (Dat et al., 2020) specifically targets Vietnamese speech recognition in 

noisy operating room environments. In contrast, our research showcases enhanced adaptability 

and resilience in ASR systems by addressing various noise scenarios. Overall, our findings indicate 

a more comprehensive approach to tackling noise challenges com- pared to the more specialized 

context explored in (Dat et al., 2020).   

3. PROPOSED APPROACH 

The proposed approach for ASR is combines CNNs and LSTM networks, leveraging their 

respective strengths to process and classify speech data effectively. The given neural network 

architecture starts with a sequential model, indicating that layers will be added one by one in 

sequence. The model begins with a convolutional layer, which applies 64 filters with a kernel size 

of 3 to the input data. This layer uses the ReLU activation function and expects input data shaped 

according to the dimensions of the training set. 

Following the first convolutional layer is a BatchNormalization layer that standardizes the 

inputs to a layer for each mini- batch, stabilizing and speeding up the learning process. Next is a 

MaxPooling layer with a pool size of 2, which reduces the dimensionality of the data and helps 

to capture dominant features. A dropout layer with a dropout rate of 0.3 is then applied to prevent 

overfitting by randomly setting 30% of the input units to zero during training. This pattern is 

repeated with a second convolution layer that applies 128 filters, followed by another 

BatchNormalization, MaxPooling, and dropout layer with the same configuration. A third 

Convolution layer then applies 256 filters, followed by similar normalization, pooling, and dropout 

layers. 

After that, the model uses a Flatten operation to each time step in the sequence independently. 

This is followed by an LSTM layer with 64 units that returns sequences, allowing the model to 

capture temporal dependencies in the data. A dropout layer with a 0.5 rate is applied to this 
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LSTM layer to further prevent overfitting. Next, another LSTM layer with 64 units is added, 

which does not return sequences, followed by another dropout layer with a 0.5 rate. The model 

then includes a dense layer with 128 units and a ReLU activation function, adding fully connected 

layers to further process the features. Another dropout layer with a 0.5 rate is applied. Finally, 

the model ends with a dense output layer with a number of units equal to the number of classes and 

uses the softmax activation function to produce probability distributions over the classes. This 

configuration allows the model to make multiclass predictions based on the input data. 

 

 

 
 

Figure 1. The proposed CNN-LSTM architecture for efficient ASR 

applied to noisy dataset. 

This hybrid CNN-LSTM approach is designed to improve ASR accuracy by effectively 

combining spatial feature ex- traction capabilities from CNNs with LSTM’s proficiency in 

handling sequential data dependencies. This architecture is particularly suited for real-world 

applications where speech recognition must perform reliably in diverse and noisy environments. 

CNN-LSTM architecture is illustrated in Figure 1. 

4. EXPERIMENTS 

A. Dataset exploration 

• AURORA-2 database: Is developed by the European  telecommunications standards institute 

(ETSI), tailored for assessing robust feature extraction within a distributed recognition 

framework. This dataset builds on the TIDig- its dataset, originally in English and accessible 

through the linguistic data consortium (LDC). It includes artificially added noise signals to 

the clean speech data to evaluate performance under various noisy conditions (Hirsh & 

Pearce, 2000),  AURORA-2 (Soe Naing et al., 2020) supports two training modes. Summary 

of detail data usage was described in Table I. 

• ASC dataset: This dataset is an Arabic Command Speech multiple examples of every 

command. This dataset captures a diverse array of samples, reflecting various ages, genders, 

and slight accent differences typical of Syrian Arabic. Importantly, all pronunciations follow 

Standard Arabic rather than regional dialects, providing consistent pronunciation across 

recordings. With a size of approximately 384 MB, the dataset is compact yet rich in diversity, 

offering ASR models ample variability to learn reliable representations of Arabic commands. 
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This dataset is valuable for researchers and developers focused on Arabic voice recognition 

and command-based applications, especially those requiring models that generalize well 

across speaker age and accent variations. 

• ESC-50 dataset: The dataset is divided into five main categories: animal sounds, natural 

soundscapes and water sounds, human non-speech sounds, interior/domestic sounds, and 

exterior/urban noises. The ESC-50 dataset 

(Takazawa et al., 2024) includes 2,000 audio files across 50 classes, with each class 

containing 40 audio samples (Karam et al., 2023). The ESC- 10 dataset is a subset of the 

ESC-50, comprising only 10 classes. Both ESC-50 and ESC-10 datasets are recorded at a 

sampling rate of 44.1 kHz, and each audio file is 5 seconds long (Demir et al., 2020). These 

datasets provide a comprehensive resource for studying sound classification, especially in 

noisy environments, due to the diversity of sounds, including urban and outdoor noises. 

 

B. Performances metrics 

• WER: measures the proportion of incorrect words in relation to the total number of words 

processed (Kheddar et al., 2023). Is defined as follows: 

 

  The calculation is based on the counts of insertions (I), deletions (D), substitutions (S), hits 

(H), and total input words (N). 

   Accuracy, recall, precision: To evaluate the effectiveness of a proposed method in the field 

of ASR, assessment criteria such as classification accuracy, recall (sensitivity) and precision 

(positive predictive value), are commonly used (Habchi et al., 2023). The aforementioned 

metrics can be  expressed as follow: 

 

 
 

TABLE I. THE SUMMARY OF AURORA-2 DATABASE 

Category Description 

Vocabulary continuous digits sequences (0-9, ’oh’) 

Sampling 44.1 KHZ, 16 bits, mono 

Male 111 speakers 21-70 ages 

Female 114 speakers 17-59 ages 

 

Training 
8,440 

utterances 

Multi-condition 

subway, babble, car, exhibition hall 
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- F1-score : is a preferred metric over accuracy when FN and FP are of significant 

importance. Additionally, in the presence of imbalanced class distributions, the F1 score is 

a more appropriate metric for evaluating ASR models (Kheddar et al., 2023). F1-score can 

be calculated using equation 5: 

F1- score (%) =  
2.Precision.Recall 

.100 (5)
    

     Precision + Recall 
  

Analysis of results 

Experiment 1: This study utilizes the Aurora-2 dataset, which comprises 4,824 isolated digit 

recordings, equally di- vided into 2,412 files for clean and noisy modes. The dataset covers 11 

classes, ranging from 0 to ’oh’. Approximately 40% of the data was reserved for testing, using 

extracted MFCC features with 39 coefficients and the original audio sampling rate, label encoding 

was performed. The multi- condition mode features four noise scenarios (subway, babble, car, and 

exhibition hall) across five SNRs: 20dB, 15dB, 10dB, 5dB, and clean conditions. 

Experiments were conducted using a model compiled with the Adam optimizer, sparse 

categorical cross-entropy loss, and accuracy as the evaluation metric. Training was performed for 

50 epochs with a batch size of 32. These settings yielded the recognition rates presented in Table 

II. The results high- light that the hybrid CNN-LSTM model significantly outper- forms the 

individual CNN, LSTM, and BiLSTM architectures. Specifically, the CNN-LSTM model 

achieved a recognition rate of 97.96% in clean mode, surpassing CNN, LSTM, DNN, and 

BiLSTM. In noisy environments, the CNN-LSTM model speech also demonstrated superior 

performance with a recognition rate of 90.72%, compared to other models. Table III shows the 

classification report for the CNN-LSTM model, while Figure 3 presents the confusion matrix for 

multiclass classification in clean speech. In noisy speech, the classification report using the CNN-

LSTM model is in Table IV, and the corresponding confusion matrix is illustrated in Figure 4. 

The WER recognition rates in clean and noisy environ- ments, depicted in Figure 2, emphasize the 

low WER of the hybrid CNN-LSTM model compared to the CNN, LSTM, and BiLSTM models 

in both conditions. In clean condition the CNN-LSTM model achieved a recognition rate with a 

2.1% reduction in WER compared to the CNN, LSTM, and BiLSTM models. In noisy 

environments, the WER for the CNN-LSTM model is 9.3%, which is a reduction compared to the 

CNN, LSTM, and BiLSTM models. Figures 5 and 6 illustrate the model’s accuracy and loss for 

both training and validation sets over 50 epochs, using clean speech data from the Aurora2 dataset. 

In Figure 5 (model accuracy), the training accuracy starts around 0.6 (60%) and increases rapidly. 

After approximately 10 epochs, the training and validation accuracy curves converge, both 

reaching a near-perfect accuracy close to 1.0 (100%). This steady alignment between training and 

validation accuracy indicates effective learning and general- ization, with no signs of overfitting. 

In Figure 6 (model loss), the loss for both training and validation begins above 2.0 and decreases 

sharply as the model trains. Around the 10th epoch, the curves converge and stabilize around 0.1 

for both training and validation, reflecting strong convergence. The low, stable loss shows that the 

20db, 15db, 10db, 5db and clean 

 

Testing 
1,001 utterances 

subway, babble, car, exhibition hall 

10db, 5db, 0db, -5db 
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model effectively reduces prediction errors, even on the validation data. These results demonstrate 

that the CNN-LSTM model achieves nearly 100% accuracy and main- tains a low loss (around 

0.1), indicating robust performance in recognizing clean speech on the Aurora2 dataset. 

 
TABLE II. ACCURACY FOR MODELS TESTED IN CLEAN AND MULTI-CONDITION TRAINING 

AURORA2 DATASET. 

Models tested Clean 

speech 

Noisy 

speech 

CNN 97.21% 90.12% 

LSTM 96.06% 86.12% 

BiLSTM 94.33% 83.43% 

DNN 80.04% 50.66% 

Concatenate CNN-

LSTM 

97.96% 90.72% 

   

 

 

 

 

 

 

 

 

Figure. 2. WER (%) recognition performance achieved by CNN, LSTM, BiLSTM, and CNN-

LSTM models in both clean and noisy environments Aurora2 dataset. 
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Figure. 3. Confusion matrix of multi class classification using a combined CNN- LSTM model in 

clean speech (Aurora2 dataset). 

 

 

TABLE III. CLASSIFICATION REPORT OF CLEAN SPEECH USING CNN- LSTM 
(AURORA2 DATASET)  

 

Experiment 2: In this study, we use a specialized subset of the ASC dataset (Lichouri et al., 2023), 

known as ASC-10, which is tailored for essential command recognition tasks. The ASC-10 dataset 

has been simplified to include only 10 distinct command classes, making it streamlined and 

efficient for ASR research. With a total of 3,000 audio files 300 unique samples per command this 
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balanced structure ensures no command is over- or under-represented, providing a solid 

foundation for training models with consistent accuracy across all classes. The 10 commands in 

ASC-10 backward, cancel, close, left, move, next, no, ok, start, and stop were selected for their 

frequent use in voice-activated applications like virtual assistants, navigation systems, and device 

controls. These keywords, while simple, cover a broad range of actions necessary for interactive 

voice-response systems. The ASC-10 dataset is not only compact and computationally efficient 

but also rich in command variety, making it a valuable resource for developing ASR models that 

need reliable performance with essential command inputs. Its structured design offers an effective 

basis for evaluating and refining command recognition, particularly in applications requiring fast, 

accurate responses to a core set of commonly used commands. The recognition rates are provided 

in Table V, which clearly show that the hybrid CNN-LSTM model significantly outperforms the 

individual CNN, LSTM, and BiLSTM architectures. In particular, the CNN-LSTM model 

achieved a 98.02% recognition rate in clean conditions, surpassing the performance of CNN, 

LSTM, DNN, and BiLSTM models. A detailed classification report for the CNN-LSTM model 

found in Table VI, while Figure 8 displays the confusion matrix for multiclass classification 

under clean speech conditions. 

 

 

 

Figure 4. Confusion matrix of multiclass classification using a combined CNN- LSTM model in 
noisy speech (Aurora2 dataset). 
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TABLE IV. CLASSIFICATION REPORT OF NOISY SPEECH USING CNN-LSTM (AURORA2 

DATASET). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5. Model accuracy in clean speech (Aurora2 dataset). 
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Figure 6. Model loss in clean speech (Aurora2 dataset). 

 

TABLE V. ACCURACY FOR MODELS TESTED IN CLEAN 
SPEECH ASC-10 DATASET 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. WER (%) recognition performance achieved by CNN, LSTM, BiLSTM, DNN and 
CNN-LSTM models in clean environments ASC-10 dataset. 

 

 

Models tested Clean speech 

CNN 97.32% 

LSTM 96.49% 

BiLSTM 97.20% 

DNN 73.16% 

Concatenate CNN-LSTM 98.02% 
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The WER rates in clean environments, illustrated in Figure 7, highlight the advantage of the 

hybrid CNN-LSTM model, which exhibits a lower WER compared to the CNN, LSTM, BiLSTM, 

and DNN models. Under clean conditions, the CNN- LSTM model achieved a 1.98% reduction 

in WER relative to the other models. Figures 9 and 10 illustrate the model’s performance in terms 

of accuracy and loss across the training and validation sets over 50 epochs on the ASC-10 dataset 

for clean speech. 

In Figure 9 (model accuracy), the training accuracy starts around 20% and rises rapidly, reaching 

close to 100% after approximately 10 epochs. The validation accuracy follows a similar pattern, 

converging with the training accuracy around the 10th epoch and stabilizing near 100%. This 

alignment between training and validation accuracy suggests that the model is learning effectively 

and generalizing well, indicating that the model is not overfitting. In Figure 10 (model loss), the 

initial loss for both training and validation begins above 2.0 and decreases sharply during the 

first 10 epochs. After this steep decline, the loss stabilizes around 0.1 for both sets. The low, stable 

loss values indicate that the model is successfully minimizing errors and maintaining strong 

performance on the validation data. These results show that the CNN-LSTM model performs well 

on the ASC-10 dataset, achieving near-perfect accuracy and a consistently low loss. This suggests 

that the model is robust and can generalize effectively to clean speech data. 

Experiment 3: The dataset used is derived from the ESC-50 dataset (Piczak et al., 2015), reduced 

to 10 classes and containing 400 audio files in total, with 40 audio files per class. The classes in 

the ESC-10 dataset include dog bark, airplane, clapping, crow, door knock, chainsaw, can opening, 

fireworks, thunderstorm, and vacuum cleaner. As shown in Table VII, in noisy envi- ronments on 

the ESC-10 dataset, the results demonstrate that the hybrid CNN-LSTM model significantly 

outperforms the standalone CNN, LSTM, and BiLSTM architectures. Specifi- cally, the CNN-

LSTM model achieved an 80.81% recognition rate in noisy conditions, surpassing the CNN, 

LSTM, DNN, and BiLSTM models. Table VIII provides the classification report for the CNN-

LSTM model, while Figure 12 displays the confusion matrix for multiclass classification in noisy 

speech. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Confusion matrix of multiclass classification using a combined CNN- LSTM model in 

clean speech (ASC-10 dataset). 
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Figure 9. Model accuracy in clean speech (ASC-10 dataset) 

 

TABLE VI. CLASSIFICATION REPORT OF CLEAN SPEECH USING CNN-LSTM 

(ASC-10 DATASET) 
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Figure 10. Model loss in clean speech (ASC-10 dataset). 

 

The WER results in noisy environments, illustrated in Figure 11, highlight the low WER of the 

CNN-LSTM model compared to the CNN, LSTM, BiLSTM, and DNN models. Under noisy 

conditions, the CNN-LSTM model achieved a 19.19% reduction in WER relative to the other 

models. 

 
 

Figure 11.   WER (%) recognition performance achieved by CNN, LSTM, BiLSTM, DNN and 
CNN-LSTM models in noisy environments ESC-10 dataset. 
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Figure 12. Confusion matrix of multiclass classification using a combined CNN- LSTM model in 

noisy speech (ESC-10 dataset). 

 

TABLE VII. ACCURACY FOR  MODELS TESTED  IN  

NOISY SPEECH ESC-10 DATASET 

 

 

 

 

 

 

 

 

 

Figure13 presents a comparison of various model architectures CNN, LSTM, BiLSTM, DNN, 

and CNN-LSTM on the Aurora2 dataset in both clean and noisy environments, as well as on the 

ASC-10 clean and ESC-10 noisy datasets. The blue line represents the Aurora2 dataset in a clean 

environment, where all models achieve high accuracy, approaching 100%. In contrast, the orange 

line shows performance on the Aurora2 dataset under noisy conditions, where accuracy decreases 

across all models but remains relatively higher compared to the ESC-10 noisy dataset, 

demonstrating the models’ robustness on the Aurora2 dataset even in challenging conditions. 

The ASC-10 dataset, represented by the gray line, is evaluated in a clean environment and 

achieves slightly lower accuracy than the Aurora2 clean data but remains relatively high, above 

80%. In comparison, the ESC-10 dataset in a noisy environment, shown by the yellow line, is 

the most challenging, with all models, especially LSTM and BiLSTM, showing a notable drop 

in accuracy. Among the models, CNN-LSTM demonstrates particularly strong performance in 

both clean and noisy conditions. It performs well in clean conditions and shows resilience to noise, 

outperforming methods like LSTM and BiLSTM, which tend to struggle in noisy environments. 

Models tested Noisy speech 

CNN 71.24% 

LSTM 60.02% 

BiLSTM 73.75% 

DNN 77.41% 

Concatenate CNN-

LSTM 

80.81% 
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This makes CNN-LSTM a promising choice for applications requiring consistent effectiveness 

across varying noise levels. We chose the Aurora2 dataset for this analysis because it performs 

well in both clean and noisy conditions compared to the ASC-10 clean and ESC-10 noisy 

datasets, making it a valuable dataset for assessing the robustness of models across different noise 

levels. 
TABLE VIII. CLASSIFICATION REPORT OF NOISY SPEECH USING CNN-LSTM  

(ESC-10 DATASET). 

 

 
 

 

 

 

Figure 13. Performance Comparison of model architectures on Aurora2, 

ASC- 10, and ESC-10 datasets in clean and noisy conditions. 

 

5. CONCLUSION 

 

In conclusion, our investigation into the combined CNN- LSTM model for speech recognition in 

both clean and noisy environments has demonstrated its superior performance over standalone 

CNN and LSTM models. The hybrid architecture effectively leverages the strengths of both CNNs 

and LSTMs, resulting in enhanced accuracy and robustness. These findings underscore the 
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potential of combining different neural net- work architectures to address complex challenges in 

speech recognition. For future work, several avenues can be explored to further enhance the 

performance and applicability of our model. Firstly, experimenting with different configurations 

of the CNN and LSTM components, such as varying the number of layers or units, could yield 

further improvements. Additionally, integrating other advanced techniques like attention 

mechanisms or Transformer models might provide better handling of long-range dependencies 

and contextual information. Moreover, applying the model to biomedical field such as cochlear 

implant (Essaid et al., 2024) would reduce the profound hearing loss disease. Finally, real-time 

implementation and optimization of the model for deployment in practical ASR systems would be 

an essential step towards its application in real-world scenarios. 
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