
 

27 
 

Dysarthria Severity detection Using Recurrent 

and Convolutional Neural Networks 

 
Djamel Addou 

Speech and Signal Processing Laboratory 

University of Sciences and Technology, 

Houari Boumediene Algiers, Algeria 

Email: daddou@usthb.dz  
 

Amina Hamza*  

Speech and Signal Processing Lab University of 

Sciences and Technology, Houari Boumediene Algiers, 

Algeria  

Email: ahamza1@usthb.dz 

 

 

   

 

 

  

30/12/2024 :Published                         13/12/2024 :Accepted            01/12/2024: vedieceR 
 

 

Abstract:  

The diagnosis and monitoring of dysarthria, a speech disorder caused by neuro-motor 

problems that affect articulation, depend on a precise evaluation of its severity. When 

creating automated systems to identify and categorize dysarthric speech, accurate severity 

classification is essential. Using neural network models, specifically recurrent neural 

networks (RNN) and convolutional neural networks (CNN), this paper offers a thorough 

investigation of how to distinguish dysarthric voices among a collection of normal voice 

samples and categorize the severity of dysarthria. Among the features used in the study are 

voice quality, prosodic parameters, formants, Mel frequency cepstral coefficients (MFCC), 

and spectrograms. Comparing the ability of convolutional networks and reccurents to 

identify abnormalities in normal data, as well as the hybrid model that combines 

convolutional and reccurent neural networks (CRNN), is our goal. The Nemours corpus 

database is used to assess these neural network models' performances. Notably, 99.8% is the 

highest classification accuracy attained with this corpus. 

 

Keywords: Dysarthria classification - CNN - RNN - CRNN - Acoustic parameters - Automatic speech  

                      assessment. 
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 اكتشاف شدة عسر التلفظ باستخدام الشبكات العصبية المتكررة والتلافيفية

 لخص: الم

لدرجة   دقيق  تقييم  النطق، على  تؤثر على  عصبية حركية  مشاكل  ناجم عن  الكلام  في  التلفظ، وهو اضطراب  تشخيص ومراقبة اضطراب  اضطرابه  يعتمد 

نماذج القصوى  باستخدام  أمر ضروري.  لدرجة الاضطراب  الدقيق  التصنيف  التلفظ، فإن  الكلام عند اضطراب  لتحديد وتصنيف  آلية  أنظمة  إنشاء  . عند 

 حول كيفية التمييز  CNN( والشبكات العصبية التلافيفية )RNNالشبكة العصبية، وتحديدًا الشبكات العصبية المتكررة )
ً
(، تقدم هذه الورقة تحقيقًا شاملا

دمة في الدراسة، بين الأصوات ذات الاضطراب التلفظي بين مجموعة من عينات الاصوات الطبيعية وتصنيف شدة اضطراب التلفظ. من بين السمات المستخ

(، والمنحنيات الطيفية. إن مقارنة قدرة الشبكات التلافيفية  MFCCاستعملنا جودة الصوت، والمؤشرات النغمية، والبواني الصوتية، ومؤشرات التردد الميلاني )

والشبكات المتكررة   والشبكات المتكررة على تحديد الشذوذ في البيانات الطبيعية، بالإضافة إلى النموذج الهجين الذي يجمع بين الشبكات العصبية التلافيفية

(CRNN  يعتبر هدفنا من هذه الدراسة. قمنا باستغلال قاعدة البيانات ،)Nemours    التي 99.8لتقييم أداء نماذجنا للشبكات العصبية. في النهاية لاحظنا نسبة %

 ة. تحصلنا عليها تعتبر أعلى دقة تصنيف تم تحقيقها باستخدام هذه القاعد

 .للكلام العلاج الآلي - المؤشرات الصوتية-   CNN  -  RNN   CRNN - - تصنيف اضطراب التلفظ  كلمات مفتاحية:

 

Détection de la gravité de la dysarthrie à l'aide de réseaux neuronaux récurrents et 

convolutionnels  

Résumé: 

Le diagnostic et le suivi de la dysarthrie, un trouble de la parole causé par des problèmes neuromoteurs qui 

affectent l'articulation, dépendent d'une évaluation précise de sa gravité. Lors de la création de systèmes 

automatisés pour identifier et catégoriser la parole dysarthrique, une classification précise de la gravité est 

essentielle. En utilisant les modèles de réseaux neuronaux, en particulier les réseaux neuronaux récurrents 

(RNN) et les réseaux neuronaux convolutionnels (CNN), cet article propose une étude approfondie de la 

manière de distinguer les voix dysarthriques parmi une base d'échantillons de voix normales et de 

catégoriser la gravité de la dysarthrie. Parmi les caractéristiques utilisées dans l'étude figurent la qualité de 

la voix, les paramètres prosodiques, les formants, les coefficients cepstraux Mel (MFCC) et les 

spectrogrammes. Nous Comparons la capacité des réseaux convolutionnels et récurrents à identifier les 

anomalies dans les données normales, ainsi que le modèle hybride qui combine les réseaux neuronaux 

convolutionnels et récurrents (CRNN), qui est notre objectif. La base de données du corpus Nemours est 

utilisée pour évaluer les performances de ces modèles de réseaux neuronaux. Nous avons enregistré un  taux 

de 99,8 % de précision de classification qui est le taux le plus élevée atteint avec ce corpus.  

Mots clés: Classification de la dysarthrie - CNN - RNN - CRNN - Paramètres acoustiques - Evaluation  

                     automatique de la parole. 
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INTRODUCTION 

 

The integrity of the central or peripheral nervous system is necessary for the control of the vocal 

apparatus. Because the speech muscles are paralyzed, weak, or poorly coordinated, this condition 

makes oral communication difficult (Freed, 2018). In particular, many neurological conditions, 

such as cerebral palsy and neurodegenerative illnesses like Parkinson's disease, are linked to 

dysarthria (Rudzicz, 2011). Due to the impairment of motor speech functions, this condition causes 

irregular speech patterns, fluctuating speech rates, reduced audibility, and imprecise articulation. 

When taken as a whole, these elements degrade speech quality (Palmer & Enderby, 2007). In order 

to track patient progress and plan speech therapy, it is essential to evaluate speech intelligibility in 

order to determine the severity of dysarthria (Schu et al., 2023). However, trained speech-language 

pathologists' subjective assessments can be expensive and unreliable, which highlights the need for 

an automated system to classify the severity of dysarthria. Additionally, people with dysarthria 

often have physical disabilities and difficulties with muscle coordination, which can limit their 

ability to use interactive applications that use touch screens or keyboards. This highlights the 

importance of automatic speech recognition (ASR) systems, since correctly classifying the degree 

of dysarthria can improve the performance of these systems, as demonstrated by (Martinez et al., 

2015). 

Various techniques have been put proposed in the literature to objectively evaluate the 

intelligibility of dysarthric speech. Automatic speech recognition (ASR) systems trained on both 

dysarthric and normal speech data are one example of such methods. The goal of these systems is 

to improve accuracy and categorize the severity of dysarthria. While these systems have benefits 

including automated intelligibility evaluation, the flexibility to adapt to varying severity levels, and 

the potential for accuracy gains through a variety of data, they also have drawbacks. These 

difficulties include restricted data availability, the inability to properly capture the subtle 

components of dysarthric speech that are necessary for an effective diagnosis and therapy, and 

difficulties in addressing the unique characteristics of dysarthric speech (Seong et al., 2016). 

Analyzing dysarthric speech signals acoustically is another strategy. This entails examining a 

variety of acoustic characteristics, such as Mel Frequency Cepstral Coefficients (MFCC), speech 

pace, prosodic qualities, fundamental frequency, and formant frequencies (Al-Qatab & Mustapha, 

2021), and i-vectors by employing techniques such as v-support vector regression (vSVR) (Bai et 

al., 2013) or probabilistic linear discriminant analysis (PLDA) (Hernandez et al., 2020) to identify 

patterns that may indicate dysarthria. Acoustic analysis records spectral information, models 

intricate correlations in data, and provides insightful information about acoustic characteristics. The 

potential for incompletely capturing the entire spectrum of dysarthria, variations in the efficacy of 

acoustic characteristics across various speech patterns, and a heavy dependence on data 

representativeness and quality for machine learning models are some of its limitations. On the other 

hand, deep learning algorithms, such as long short-term memory (LSTM) networks, convolutional 

neural networks (CNN), and deep neural networks (DNN) (Deng & Platt, 2014), have been studied 

for the purpose of dysarthric automatic speech recognition (ASR) using dysarthric datasets like 

TORGO (Deng & Platt, 2014), Nemours, and UASpeech. These machine learning algorithms show 

mastery of speech tasks by learning hierarchical representations that include speech patterns and 

acoustic features, and they are robustly adaptive to complex dysarthric speech data. They do, 

however, have several drawbacks, such as the requirement for large datasets, sensitivity to building 
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and hyperparameter choices, and computing requirements that could make them difficult to apply 

in contexts with restricted resources (Joy et al., 2017). Furthermore, research has looked at 

perceptual assessment techniques, which use speech-language pathologists or trained listeners to 

gauge how intelligible dysarthric speech is. In order to measure the severity of dysarthria, these 

evaluations usually use rating scales or scoring systems. Overall, the majority of existing research 

has advanced the development of objective methods for determining the intelligibility of dysarthric 

speech and categorizing it. More accurate and consistent assessments are now possible because to 

these advancements, which also make it easier to track patients' progress and create customized 

speech therapy programs (Mehrish et al., 2023).  

This framework's objective is to investigate, apply, and select the best acoustic properties, such 

as voice quality, formants, prosodic parameters, mel-spectrograms, and Mel Frequency Cepstral 

Coefficients (MFCCs). Dysarthric speech is often assessed and categorized using these 

characteristics since they can capture significant aspects of the condition. This drive results from 

these parameters' advantages: Formants are used to provide information about articulatory 

coordination, prosodic parameters are used to reflect irregularities in speech rhythm, voice quality 

parameters are used to evaluate vocal qualities, mel-frequency cepstral coefficients (MFCCs) are 

used to capture spectral information, and spectrograms provide a comprehensive view of the 

temporal and spectral aspects of the speech signal. Making use of these characteristics enables a 

thorough depiction of dysarthric speech, which promotes more accurate classification and 

evaluation of intelligibility. To create a classification system for the severity of dysarthria, these 

characteristics are combined with convolutional neural networks (CNN), recurrent neural networks 

(RNN), and their hybrid model. The study was carried out on the Nemours dysarthric speech 

database. The selection of these techniques was justified by the goal of using the chosen acoustic 

features to create a thorough representation of dysarthric speech, which should improve the 

precision of intelligibility evaluation and classification. Deep learning algorithms, such as 

recurrent neural networks (RNNs), are utilized to capture complex temporal dependencies and 

patterns within data, while convolutional neural networks (CNNs) are employed for tasks like 

image classification, including the analysis of mel spectrograms, which play a vital role in the 

effective classification of dysarthria. 

 

1. PROPOSED SYSTEM DESCRIPTION 

 
This section is devoted to giving a thorough rundown of the methodology used to determine the 

severity of dysarthria. It discusses the process of choosing and extracting pertinent linguistic and 

acoustic characteristics, as well as the specifics of the model's development and application for 

determining the severity of dysarthria. 

A. Prepocessing 

The following parameters are employed on the basis of their efficacy in facilitating the 

distinction between voices: 

• MFCCs: Mel Frequency Cepstral Coefficients measure articulation and vocal tract 

resonance variations in dysarthria, offering vital information about the intelligibility and 

clarity of speech. 
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• Prosodic Parameters: Dysarthria frequently causes disruptions in prosodic parameters, such 

as stress, intonation, and rhythm patterns in speech, which impact phrasing, pitch variability, 

and speech rate. 

• Formants: The frequencies at which a vocal tract resonates are known as formants. Vowel 

perception greatly depends on formants, which can be impacted in dysarthric speech due to 

changes in vocal tract control. Formant frequency analysis makes it possible to evaluate 

vowel quality and articulatory accuracy. 

• Voice Quality parameters: Hoarseness, breathiness, or strained vocal quality are some of 

the changes that can occur in dysarthric speech (Salhi & Cherif, 2013). These variations in 

voice quality are measured using parameters like jitter, shimmer, and Harmonics-to-Noise 

Ratio (HNR), which reveal how severe dysarthria is. 

• Mel Frequency Spectrograms: When frequency and perceived loudness are not linearly 

proportional, mel scale corresponds to human auditory perception. Derived from the input 

speech waveform, the mel-spectrogram offers a frequency representation that is more 

sensitive to the way that people perceive sound. 

B. Classifier Design 

1) Convolutional Reccurent Neural Network : Convolutional and recurrent neural networks are 

combined to create the CRNN (Zuo et al., 2017;  Xiao et al., 2016). As seen in the graphical 

representation of CRNN below, it is made up of convolutional (and pooling) layers followed by a 

few recurrent layers. The benefits of both recurrent and convolutional networks are combined in 

CRNN. The input sequence's middle-level, abstract, and locally invariant features can be 

effectively extracted by the convolutional layers. The pooling layers aid in overfitting control and 

computation reduction. From the feature sequence produced by the earlier convolutional layers, 

the recurrent layers extract contextual information. The hyperspectral sequence's dependencies 

between various bands are captured by contextual information, which makes it more stable and 

helpful for classification. The architecture used is as follow :  

 
TABLE 1 . CRNN ARCHITECTURE 

 

Layer (type) Output Shape 

conv2d (Conv2D) (Relu) (None, 256, 256, 32) 

max_pooling2d (MaxPooling2D) (None, 128, 128, 32) 

conv2d (Conv2D) (Relu) (None, 128, 128, 64) 

max_pooling2d_4 (MaxPooling2D) (None, 64, 64, 64) 

conv2d (Conv2D) (Relu) (None, 64, 64, 128) 

max_pooling2d (MaxPooling2D) (None, 32, 32, 128) 

flatten (Flatten) (None, 131072) 

dense (Dense) (None, 128) 

dropout (Dropout) (None, 128) 

Reshape (reshape) (None, 128,1) 

Simple_rnn (None, 64) 

dense_2 (Dense) (sigmoid or softmax) (None, 1) 
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Figure 1. Architecture of the convolutional recurrent neural network (CRNN). 

 

2) Reccurent Neural network classifier : it is used in the study's classification phase.  By 

preserving an internal memory state, RNNs are made to process sequential data. This enables the 

model to take temporal context into account and identify dependencies within the sequence. 

Because the "tanh" (hyperbolic tangent) activation function is nonlinear and can handle both 

positive and negative values, it is utilized in the RNN model's hidden layer, which has 64 neurons. 

One neuron with a "sigmoid" activation function, chosen for its applicability in binary 

classification tasks (Kheddar et al., 2019), and a softmax for three-class classification make up the 

RNN model's output layer. In order to capture and take advantage of temporal dependencies in the 

data, the RNN model (fig. 2) has a single recurrent hidden layer with 64 neurons that allows 

connections between neurons in the temporal sequence. With a batch size of 32 and 15 iterations, 

the model is backpropagated during training in order to minimize the cost function using gradient 

descent. By efficiently capturing temporal relationships in speech samples, this recurrent structure 

enables the RNN to increase the classification accuracy of dysarthria severity. 
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Figure 2. Structure of RNN 

 

1) Convolutional Neural Network classifier: spectrograms were fed into the CNN model. 

Both pathological and healthy speech samples are represented by these spectrograms. A sigmoid 

activation function was employed for binary classification, which sought to differentiate 

pathological samples from normal ones. The softmax activation function was used for the three-

class classification (severe, moderate, and mild). The model distinguishes dysarthric speech from 
normal speech by taking advantage of color changes in the spectrograms that are associated with 

vocal energy. The table below displays the CNN model's intricate structure :  

 
TABLE 2. CNN ARCHITECTURE 

 

 

 

 

 

 

 

 

 

 

 

2. EXPERIMENTAL EVALUATION 

 
A. Dataset  

The Nemours database (Seong et al., 2016) is used in the proposed study for evaluation. 814 

recordings of 74 sentences uttered by 11 people with dysarthria—a condition caused by conditions 

like cerebral palsy and head trauma—make up the dataset. Nonsensical phrases like "The sin is 

sitting the who," which are part of the Nemours corpus, are used as stimuli to evaluate the 

intelligibility of dysarthric speech and to examine patterns of production errors. While phoneme-

level annotations are available for sentences from 10 out of 11 speakers, word-level annotations 

Layer (type) Activation Output Shape 

(Conv2D) Relu (None, 256, 256, 32) 

(MaxPooling2D) / (None, 128, 128, 32) 

(Conv2D) Relu (None, 128, 128, 64) 

(MaxPooling2D) / (None, 64, 64, 64) 

(Conv2D) Relu (None, 64, 64, 128) 

(MaxPooling2D) / (None, 32, 32, 128) 

Flatten) / (None, 131072) 

(Dense) / (None, 128) 

(Dropout) / (None, 128) 

(Dense) Sigmoid or 

softmax 

(None, 2 or 3) 



Dysarthria Severity detection Using Recurrent and Convolutional Neural Networks 

  
 

AL-LISANIYYAT - Vol.30 - N°2     

 
 

are included for the entire dataset. Additionally, information from the Frenchay Dysarthria 

Assessment version 1 (FDA-1) (Mazari et al., 2023), a standardized tool for assessing dysarthric 

speech in the English language, is incorporated into the Nemours database. 

The identifications and recognition scores from a study (Kadi & Selouani, 2019) with subjects 

divided into three groups—severe, moderate, and mild—are shown in Table 3. The proposed study 

can learn a great deal about the traits and intelligibility of dysarthric speech by using this extensive 

dataset. 

 
TABLE 3. SEVERITY OF DYSARTHRIC SPEAKERS FROM THE NEMOURS  DATABASE REFLECTING THE 

FDA-1 ASSESSMENT TOOL (Mazari et al., 2023). 

 

 

 

 

 

 

B. Experimental Framework 

As shown in Figure 3, the experimental framework is separated into two stages: the learning 

phase and the testing phase. Three supervised machine learning techniques RNN, CNN, and CRNN 

are suggested in order to create a highly accurate discriminator . The implementation of the RNN 

model makes use of 37 acoustics parameters. In addition to mastering the nonlinear mapping 

between inputs and outputs, it also demonstrates exceptional comprehension of the underlying data 

structure, enabling it to handle speech signal variabilities with ease. A Hanning window size of 

2048 samples, a frame spacing of 512 samples, and MFCCs sampled at a frequency of 16 Hz are 

used to characterize each speech frame for the front-end representation. F0, HNR, Jitter, and 

Shimmer are among the other features that are extracted. Mel-spectrograms, which are fed into 

convolutional networks, were created with the Librosa library, sampled at 16 kHz, and then resized 

to 256x256 pixels . The objective is to create a reliable and accurate system for classifying the 

severity of dysarthria by utilizing this experimental framework and the strengths of the three 

models. 

 

Data base
Sound files

(*.WAV)

Prosodic

Voice quality

Cepstral

Formants

Acoustic features extraction

Training samples
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Classification Model and Pathological detection

Training phase

Prediction phase
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Figure 3. Proposed classification model (Hamza et al., 2023). 
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C. Results and discussion 

       Choosing the right amount of training and test data is essential for supervised learning techniques 

in order to avoid overfitting and underfitting. About 70% of the data in this study is used for training, 

and the remaining 30% is used for testing when the three methods are used to build classification 

rules. 

The models are put into practice in phases. The results of pathological voice detection, 

particularly in the context of cross-validation, are the main focus of this evaluation. By splitting the 

dataset into k-folds, cross-validation is used to perform multiple tests . 

The study also looks at using additional voice parameters as feature sets for RNN classifier 

models, such as jitter, shimmer, F0, and NHR measures. This investigation sheds light on how 

various feature sets affect the classifiers' performance . 

Finally, the three models used to classify the severity of dysarthric voice are assessed. The goal 

of this in-depth analysis is to determine how well each model classifies the severity levels of 

dysarthric voices . 

1) Cross validation results  : K-fold cross-validation, which divides the sample set into K 

subsets, was used to conduct a number of tests. The remaining subsets are used for training, and 

each subset is used as a validation set. K values of 5, 8, and 10 were chosen for this investigation. 

Both the RNN and CRNN models were evaluated, with 15 iterations per fold. Table 4 presents the 

findings. 
 

     TABLE 4.  DYSARTHRIC DETECTION RATE BY K-FOLD CROSS-VALIDATION 

 

 

 

 

 

 

 

The table presents the dysarthric detection rates of RNN, CNN, and CRNN models using k-fold 

cross-validation with k=5, k=8, and k=10. Both RNN and CNN exhibit excellent and consistent 

performance, with classification rates above 99%, though CNN slightly outperforms RNN at k=5 

and k=8, achieving its highest rate (99.80%) at k=8. However, CRNN demonstrates significantly 

lower performance, with a sharp decline as k increases, dropping from 98.45% at k=5 to 84.39% at 

k=10. Overall, CNN emerges as the most reliable model, while CRNN shows limitations in 

generalization with larger k-values. 

2) Influence of acoustic parameters on the detection of abnormal speech: The effect of various 

parameters on the detection and classification system's performance was evaluated through an 

analysis. In particular, the 10-fold cross-validation classifier model was assessed. Based on the 

selected acoustic parameters, the results are summarized in Fig. 4. 
Interestingly, performance improved across all metrics when all 37 parameters were used. 

While using the 13 MFCC parameters separately led to poorer performance in comparison to the 
full parameter set, the comprehensive parameter set improved system accuracy. 

Model 
Classification rate (%) 

K=5 K=8 K=10 

RNN 99.51 99.54 99.69 

CNN 99.73 99.80 99.53 

CRNN 98.45 91.82 84.39 
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The classification score increased when jitter and shimmer were added to MFCC, yielding a 

classification rate of 99.69% that was comparable to the full parameter set. The classifier operated 

satisfactorily but was marginally less efficient than the other two configurations when taking into 

account 24 parameters pertaining to jitter, shimmer, F0, and HNR without MFCCs. This suggests 

that combining all of the parameters yielded the best accuracy by utilizing the advantages of each 

one separately. 

 

Figure 4. Influence of acoustic parameters on the detection of abnormal speech. 

Overall, the findings demonstrate how important it is to employ a variety of acoustic 

characteristics in order to enhance the functionality of dysarthria classifi 

 Dysarthria severity classification performance comparison:  Data on dysarthric voice is 

categorized using severity levels, with each level being labeled as "Mild," "Moderate," or "Severe." 

Thirty percent of the dysarthric database was used for the classification tests, which produced the 

outcomes detailed on the table 5  :  

TABLE 5.  DYSARTHRIA SEVERITY-WISE ACCURACY FOR PROPOSED CLASSIFICATION 

MODELS (100 epochs) 

Severity 

Class 

RNN 

Accuracy 

(%) 

CNN 

Accuracy 

(%) 

CRNN 

Accuracy 

(%) 

Severe 0 100 96.97 

Moderate 100 97 91.04 

Mild 95.50 100 100 

overall 65.16 99 96 

 

The table evaluates the severity-wise and overall accuracy of RNN, CNN, and CRNN models for 

dysarthria classification over 100 epochs. CNN achieves near-perfect accuracy across all severity 
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classes, with 100% for severe, mild, and overall, and 97% for moderate cases, making it the most 

consistent and reliable model. CRNN also performs well, achieving 96% overall accuracy and 

perfect results for mild cases (100%), though it slightly underperforms for moderate (91.04%) and 

severe cases (96.97%). In contrast, RNN struggles with severe dysarthria, achieving 0% accuracy, 

and its overall performance is the lowest at 65.16%, despite performing well for moderate (100%) 

and mild (95.50%) cases. These results highlight CNN’s superior generalization and robustness, 

while CRNN shows good potential with some variability, and RNN faces significant challenges, 

especially with severe cases. 

 

3. CONCLUSION 

 
This study employs supervised learning, leveraging labeled data to train a model capable of learning 

from examples, to address vocal pathology detection and dysarthria classification. The results 

highlight the effectiveness of this approach in developing accurate detection and classification 

systems. The experiments demonstrated that incorporating multiple acoustic parameters 

significantly improved detection performance, with the RNN achieving an impressive accuracy of 

over 99%. However, for classifying dysarthria severity, the RNN was surpassed by CRNN and 

CNN, which achieved accuracy rates of 96% and 99%, respectively. Ultimately, the study 

successfully developed a reliable model for vocal pathology detection, with future work aiming to 

enhance pathological voice recognition further . 
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