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Abstract:

The diagnosis and monitoring of dysarthria, a speech disorder caused by neuro-motor
problems that affect articulation, depend on a precise evaluation of its severity. When
creating automated systems to identify and categorize dysarthric speech, accurate severity
classification is essential. Using neural network models, specifically recurrent neural
networks (RNN) and convolutional neural networks (CNN), this paper offers a thorough
investigation of how to distinguish dysarthric voices among a collection of normal voice
samples and categorize the severity of dysarthria. Among the features used in the study are
voice quality, prosodic parameters, formants, Mel frequency cepstral coefficients (MFCC),
and spectrograms. Comparing the ability of convolutional networks and reccurents to
identify abnormalities in normal data, as well as the hybrid model that combines
convolutional and reccurent neural networks (CRNN), is our goal. The Nemours corpus
database is used to assess these neural network models' performances. Notably, 99.8% is the
highest classification accuracy attained with this corpus.

Keywords: Dysarthria classification - CNN - RNN - CRNN - Acoustic parameters - Automatic speech
assessment.
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Détection de la gravité de la dysarthrie a I'aide de réseaux neuronaux récurrents et
convolutionnels

Résume:

Le diagnostic et le suivi de la dysarthrie, un trouble de la parole causé par des problémes neuromoteurs qui
affectent l'articulation, dépendent d'une évaluation précise de sa gravité. Lors de la création de systemes
automatisés pour identifier et catégoriser la parole dysarthrique, une classification précise de la gravité est
essentielle. En utilisant les modéles de réseaux neuronaux, en particulier les réseaux neuronaux récurrents
(RNN) et les réseaux neuronaux convolutionnels (CNN), cet article propose une étude approfondie de la
maniére de distinguer les voix dysarthriques parmi une base d'échantillons de voix normales et de
catégoriser la gravité de la dysarthrie. Parmi les caractéristiques utilisées dans I'étude figurent la qualité de
la voix, les paramétres prosodiques, les formants, les coefficients cepstraux Mel (MFCC) et les
spectrogrammes. Nous Comparons la capacité des réseaux convolutionnels et récurrents a identifier les
anomalies dans les données normales, ainsi que le modéle hybride qui combine les réseaux neuronaux
convolutionnels et récurrents (CRNN), qui est notre objectif. La base de données du corpus Nemours est
utilisée pour évaluer les performances de ces modéles de réseaux neuronaux. Nous avons enregistré un taux
de 99,8 % de précision de classification qui est le taux le plus élevée atteint avec ce corpus.

Mots clés: Classification de la dysarthrie - CNN - RNN - CRNN - Paramétres acoustiques - Evaluation
automatique de la parole.
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INTRODUCTION

The integrity of the central or peripheral nervous system is necessary for the control of the vocal
apparatus. Because the speech muscles are paralyzed, weak, or poorly coordinated, this condition
makes oral communication difficult (Freed, 2018). In particular, many neurological conditions,
such as cerebral palsy and neurodegenerative illnesses like Parkinson's disease, are linked to
dysarthria (Rudzicz, 2011). Due to the impairment of motor speech functions, this condition causes
irregular speech patterns, fluctuating speech rates, reduced audibility, and imprecise articulation.
When taken as a whole, these elements degrade speech quality (Palmer & Enderby, 2007). In order
to track patient progress and plan speech therapy, it is essential to evaluate speech intelligibility in
order to determine the severity of dysarthria (Schu et al., 2023). However, trained speech-language
pathologists’ subjective assessments can be expensive and unreliable, which highlights the need for
an automated system to classify the severity of dysarthria. Additionally, people with dysarthria
often have physical disabilities and difficulties with muscle coordination, which can limit their
ability to use interactive applications that use touch screens or keyboards. This highlights the
importance of automatic speech recognition (ASR) systems, since correctly classifying the degree
of dysarthria can improve the performance of these systems, as demonstrated by (Martinez et al.,
2015).

Various techniques have been put proposed in the literature to objectively evaluate the
intelligibility of dysarthric speech. Automatic speech recognition (ASR) systems trained on both
dysarthric and normal speech data are one example of such methods. The goal of these systems is
to improve accuracy and categorize the severity of dysarthria. While these systems have benefits
including automated intelligibility evaluation, the flexibility to adapt to varying severity levels, and
the potential for accuracy gains through a variety of data, they also have drawbacks. These
difficulties include restricted data availability, the inability to properly capture the subtle
components of dysarthric speech that are necessary for an effective diagnosis and therapy, and
difficulties in addressing the unique characteristics of dysarthric speech (Seong et al., 2016).
Analyzing dysarthric speech signals acoustically is another strategy. This entails examining a
variety of acoustic characteristics, such as Mel Frequency Cepstral Coefficients (MFCC), speech
pace, prosodic qualities, fundamental frequency, and formant frequencies (Al-Qatab & Mustapha,
2021), and i-vectors by employing techniques such as v-support vector regression (VSVR) (Bai et
al., 2013) or probabilistic linear discriminant analysis (PLDA) (Hernandez et al., 2020) to identify
patterns that may indicate dysarthria. Acoustic analysis records spectral information, models
intricate correlations in data, and provides insightful information about acoustic characteristics. The
potential for incompletely capturing the entire spectrum of dysarthria, variations in the efficacy of
acoustic characteristics across various speech patterns, and a heavy dependence on data
representativeness and quality for machine learning models are some of its limitations. On the other
hand, deep learning algorithms, such as long short-term memory (LSTM) networks, convolutional
neural networks (CNN), and deep neural networks (DNN) (Deng & Platt, 2014), have been studied
for the purpose of dysarthric automatic speech recognition (ASR) using dysarthric datasets like
TORGO (Deng & Platt, 2014), Nemours, and UASpeech. These machine learning algorithms show
mastery of speech tasks by learning hierarchical representations that include speech patterns and
acoustic features, and they are robustly adaptive to complex dysarthric speech data. They do,
however, have several drawbacks, such as the requirement for large datasets, sensitivity to building
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and hyperparameter choices, and computing requirements that could make them difficult to apply
in contexts with restricted resources (Joy et al., 2017). Furthermore, research has looked at
perceptual assessment techniques, which use speech-language pathologists or trained listeners to
gauge how intelligible dysarthric speech is. In order to measure the severity of dysarthria, these
evaluations usually use rating scales or scoring systems. Overall, the majority of existing research
has advanced the development of objective methods for determining the intelligibility of dysarthric
speech and categorizing it. More accurate and consistent assessments are now possible because to
these advancements, which also make it easier to track patients' progress and create customized
speech therapy programs (Mehrish et al., 2023).

This framework's objective is to investigate, apply, and select the best acoustic properties, such
as voice quality, formants, prosodic parameters, mel-spectrograms, and Mel Frequency Cepstral
Coefficients (MFCCs). Dysarthric speech is often assessed and categorized using these
characteristics since they can capture significant aspects of the condition. This drive results from
these parameters' advantages: Formants are used to provide information about articulatory
coordination, prosodic parameters are used to reflect irregularities in speech rhythm, voice quality
parameters are used to evaluate vocal qualities, mel-frequency cepstral coefficients (MFCCs) are
used to capture spectral information, and spectrograms provide a comprehensive view of the
temporal and spectral aspects of the speech signal. Making use of these characteristics enables a
thorough depiction of dysarthric speech, which promotes more accurate classification and
evaluation of intelligibility. To create a classification system for the severity of dysarthria, these
characteristics are combined with convolutional neural networks (CNN), recurrent neural networks
(RNN), and their hybrid model. The study was carried out on the Nemours dysarthric speech
database. The selection of these techniques was justified by the goal of using the chosen acoustic
features to create a thorough representation of dysarthric speech, which should improve the
precision of intelligibility evaluation and classification. Deep learning algorithms, such as
recurrent neural networks (RNNs), are utilized to capture complex temporal dependencies and
patterns within data, while convolutional neural networks (CNNs) are employed for tasks like
image classification, including the analysis of mel spectrograms, which play a vital role in the
effective classification of dysarthria.

1. PROPOSED SYSTEM DESCRIPTION

This section is devoted to giving a thorough rundown of the methodology used to determine the
severity of dysarthria. It discusses the process of choosing and extracting pertinent linguistic and
acoustic characteristics, as well as the specifics of the model's development and application for
determining the severity of dysarthria.

A. Prepocessing

The following parameters are employed on the basis of their efficacy in facilitating the
distinction between voices:

e MFCCs: Mel Frequency Cepstral Coefficients measure articulation and vocal tract
resonance variations in dysarthria, offering vital information about the intelligibility and
clarity of speech.

| AL-LISANIYYAT -Vol.30 - N°2




Amina Hamza, Djamel Addou

e Prosodic Parameters: Dysarthria frequently causes disruptions in prosodic parameters, such
as stress, intonation, and rhythm patterns in speech, which impact phrasing, pitch variability,
and speech rate.

e Formants: The frequencies at which a vocal tract resonates are known as formants. Vowel
perception greatly depends on formants, which can be impacted in dysarthric speech due to
changes in vocal tract control. Formant frequency analysis makes it possible to evaluate
vowel quality and articulatory accuracy.

e Voice Quality parameters: Hoarseness, breathiness, or strained vocal quality are some of
the changes that can occur in dysarthric speech (Salhi & Cherif, 2013). These variations in
voice quality are measured using parameters like jitter, shimmer, and Harmonics-to-Noise
Ratio (HNR), which reveal how severe dysarthria is.

e Mel Frequency Spectrograms: When frequency and perceived loudness are not linearly
proportional, mel scale corresponds to human auditory perception. Derived from the input
speech waveform, the mel-spectrogram offers a frequency representation that is more
sensitive to the way that people perceive sound.

B. Classifier Design

1) Convolutional Reccurent Neural Network : Convolutional and recurrent neural networks are
combined to create the CRNN (Zuo et al., 2017; Xiao et al., 2016). As seen in the graphical
representation of CRNN below, it is made up of convolutional (and pooling) layers followed by a
few recurrent layers. The benefits of both recurrent and convolutional networks are combined in
CRNN. The input sequence's middle-level, abstract, and locally invariant features can be
effectively extracted by the convolutional layers. The pooling layers aid in overfitting control and
computation reduction. From the feature sequence produced by the earlier convolutional layers,
the recurrent layers extract contextual information. The hyperspectral sequence's dependencies
between various bands are captured by contextual information, which makes it more stable and
helpful for classification. The architecture used is as follow :

TABLE 1.CRNNARCHITECTURE

Layer (type)

Output Shape

conv2d (Conv2D) (Relu)

(None, 256, 256, 32)

max_pooling2d (MaxPooling2D)

(None, 128, 128, 32)

conv2d (Conv2D) (Relu)

(None, 128, 128, 64)

max_pooling2d 4 (MaxPooling2D)

(None, 64, 64, 64)

conv2d (Conv2D) (Relu)

(None, 64, 64, 128)

max_pooling2d (MaxPooling2D)

(None, 32, 32, 128)

flatten (Flatten)

(None, 131072)

dense (Dense) (None, 128)
dropout (Dropout) (None, 128)
Reshape (reshape) (None, 128,1)
Simple rnn (None, 64)
dense 2 (Dense) (sigmoid or softmax) (None, 1)
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Figure 1. Architecture of the convolutional recurrent neural network (CRNN).

2) Reccurent Neural network classifier : it is used in the study's classification phase. By
preserving an internal memory state, RNNs are made to process sequential data. This enables the
model to take temporal context into account and identify dependencies within the sequence.
Because the "tanh™ (hyperbolic tangent) activation function is nonlinear and can handle both
positive and negative values, it is utilized in the RNN model's hidden layer, which has 64 neurons.
One neuron with a "sigmoid" activation function, chosen for its applicability in binary
classification tasks (Kheddar et al., 2019), and a softmax for three-class classification make up the
RNN model's output layer. In order to capture and take advantage of temporal dependencies in the
data, the RNN model (fig. 2) has a single recurrent hidden layer with 64 neurons that allows
connections between neurons in the temporal sequence. With a batch size of 32 and 15 iterations,
the model is backpropagated during training in order to minimize the cost function using gradient
descent. By efficiently capturing temporal relationships in speech samples, this recurrent structure
enables the RNN to increase the classification accuracy of dysarthria severity.
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Figure 2. Structure of RNN

1) Convolutional Neural Network classifier: spectrograms were fed into the CNN model.
Both pathological and healthy speech samples are represented by these spectrograms. A sigmoid
activation function was employed for binary classification, which sought to differentiate
pathological samples from normal ones. The softmax activation function was used for the three-
class classification (severe, moderate, and mild). The model distinguishes dysarthric speech from
normal speech by taking advantage of color changes in the spectrograms that are associated with
vocal energy. The table below displays the CNN model's intricate structure :

TABLE 2. CNN ARCHITECTURE

Layer (type) Activation Output Shape
(Conv2D) Relu (None, 256, 256, 32)
(MaxPooling2D) / (None, 128, 128, 32)
(Conv2D) Relu (None, 128, 128, 64)
(MaxPooling2D) / (None, 64, 64, 64)
(Conv2D) Relu (None, 64, 64, 128)
(MaxPooling2D) / (None, 32, 32, 128)
Flatten) / (None, 131072)
(Dense) / (None, 128)
(Dropout) / (None, 128)
(Dense) Sigmoid or (None, 2 or 3)
softmax

2. EXPERIMENTAL EVALUATION

A. Dataset

The Nemours database (Seong et al., 2016) is used in the proposed study for evaluation. 814
recordings of 74 sentences uttered by 11 people with dysarthria—a condition caused by conditions
like cerebral palsy and head trauma—make up the dataset. Nonsensical phrases like "The sin is
sitting the who,” which are part of the Nemours corpus, are used as stimuli to evaluate the
intelligibility of dysarthric speech and to examine patterns of production errors. While phoneme-
level annotations are available for sentences from 10 out of 11 speakers, word-level annotations
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are included for the entire dataset. Additionally, information from the Frenchay Dysarthria
Assessment version 1 (FDA-1) (Mazari et al., 2023), a standardized tool for assessing dysarthric
speech in the English language, is incorporated into the Nemours database.

The identifications and recognition scores from a study (Kadi & Selouani, 2019) with subjects
divided into three groups—severe, moderate, and mild—are shown in Table 3. The proposed study
can learn a great deal about the traits and intelligibility of dysarthric speech by using this extensive
dataset.

TABLE 3. SEVERITY OF DYSARTHRIC SPEAKERS FROM THE NEMOURS DATABASE REFLECTING THE
FDA-1 ASSESSMENT TOOL (Mazari et al., 2023).

LEVEL OF MODERA

SEVERITY SEVERE Tc MILD
B|B|R B M

PATIENT |SC v Ik |k RL|JF|LL B lH FB

B. Experimental Framework

As shown in Figure 3, the experimental framework is separated into two stages: the learning
phase and the testing phase. Three supervised machine learning techniques RNN, CNN, and CRNN
are suggested in order to create a highly accurate discriminator. The implementation of the RNN
model makes use of 37 acoustics parameters. In addition to mastering the nonlinear mapping
between inputs and outputs, it also demonstrates exceptional comprehension of the underlying data
structure, enabling it to handle speech signal variabilities with ease. A Hanning window size of
2048 samples, a frame spacing of 512 samples, and MFCCs sampled at a frequency of 16 Hz are
used to characterize each speech frame for the front-end representation. FO, HNR, Jitter, and
Shimmer are among the other features that are extracted. Mel-spectrograms, which are fed into
convolutional networks, were created with the Librosa library, sampled at 16 kHz, and then resized
to 256x256 pixels. The objective is to create a reliable and accurate system for classifying the
severity of dysarthria by utilizing this experimental framework and the strengths of the three
models.

Supervised Learning

ag  Training samples

ll
I| Voice quality I

3 :

Training phase

Data base
Sound files

Prediction phase

Prediction score

Acoustic features extraction Classification Model and Pathological detection

Figure 3. Proposed classification model (Hamza et al., 2023).
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C. Results and discussion

Choosing the right amount of training and test data is essential for supervised learning techniques
in order to avoid overfitting and underfitting. About 70% of the data in this study is used for training,
and the remaining 30% is used for testing when the three methods are used to build classification
rules.

The models are put into practice in phases. The results of pathological voice detection,
particularly in the context of cross-validation, are the main focus of this evaluation. By splitting the
dataset into k-folds, cross-validation is used to perform multiple tests.

The study also looks at using additional voice parameters as feature sets for RNN classifier
models, such as jitter, shimmer, FO, and NHR measures. This investigation sheds light on how
various feature sets affect the classifiers' performance.

Finally, the three models used to classify the severity of dysarthric voice are assessed. The goal
of this in-depth analysis is to determine how well each model classifies the severity levels of
dysarthric voices.

1) Cross validation results : K-fold cross-validation, which divides the sample set into K
subsets, was used to conduct a number of tests. The remaining subsets are used for training, and
each subset is used as a validation set. K values of 5, 8, and 10 were chosen for this investigation.
Both the RNN and CRNN models were evaluated, with 15 iterations per fold. Table 4 presents the
findings.

TABLE 4. DYSARTHRIC DETECTION RATE BY K-FOLD CROSS-VALIDATION

Classification rate (%0)
K=5 K=8 K=10
RNN 99.51 99.54 99.69
CNN 99.73 99.80 99.53
CRNN 98.45 91.82 84.39

Model

The table presents the dysarthric detection rates of RNN, CNN, and CRNN models using k-fold
cross-validation with k=5, k=8, and k=10. Both RNN and CNN exhibit excellent and consistent
performance, with classification rates above 99%, though CNN slightly outperforms RNN at k=5
and k=8, achieving its highest rate (99.80%) at k=8. However, CRNN demonstrates significantly
lower performance, with a sharp decline as k increases, dropping from 98.45% at k=5 to 84.39% at
k=10. Overall, CNN emerges as the most reliable model, while CRNN shows limitations in
generalization with larger k-values.

2) Influence of acoustic parameters on the detection of abnormal speech: The effect of various
parameters on the detection and classification system's performance was evaluated through an
analysis. In particular, the 10-fold cross-validation classifier model was assessed. Based on the

selected acoustic parameters, the results are summarized in Fig. 4.

Interestingly, performance improved across all metrics when all 37 parameters were used.
While using the 13 MFCC parameters separately led to poorer performance in comparison to the
full parameter set, the comprehensive parameter set improved system accuracy.

| AL-LISANIYYAT -Vol.30 - N°2




Dysarthria Severity detection Using Recurrent and Convolutional Neural Networks

The classification score increased when jitter and shimmer were added to MFCC, yielding a
classification rate of 99.69% that was comparable to the full parameter set. The classifier operated
satisfactorily but was marginally less efficient than the other two configurations when taking into
account 24 parameters pertaining to jitter, shimmer, FO, and HNR without MFCCs. This suggests
that combining all of the parameters yielded the best accuracy by utilizing the advantages of each
one separately.

CLASSIFICATION RATE (%)

99,69

i}
)
&

99,45
99,69

95,81
91,25

80,03

Figure 4. Influence of acoustic parameters on the detection of abnormal speech.

Overall, the findings demonstrate how important it is to employ a variety of acoustic
characteristics in order to enhance the functionality of dysarthria classifi

Dysarthria severity classification performance comparison: Data on dysarthric voice is
categorized using severity levels, with each level being labeled as "Mild,” "Moderate," or "Severe."
Thirty percent of the dysarthric database was used for the classification tests, which produced the
outcomes detailed on the table 5 :

TABLE 5. DYSARTHRIA SEVERITY-WISE ACCURACY FOR PROPOSED CLASSIFICATION
MODELS (100 epochs)

Severity RNN CNN CRNN
Class Accuracy Accuracy Accuracy
(%) (%) (%)
Severe 0 100 96.97
Moderate 100 97 91.04
Mild 95.50 100 100
overall 65.16 99 96

The table evaluates the severity-wise and overall accuracy of RNN, CNN, and CRNN models for
dysarthria classification over 100 epochs. CNN achieves near-perfect accuracy across all severity
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classes, with 100% for severe, mild, and overall, and 97% for moderate cases, making it the most
consistent and reliable model. CRNN also performs well, achieving 96% overall accuracy and
perfect results for mild cases (100%), though it slightly underperforms for moderate (91.04%) and
severe cases (96.97%). In contrast, RNN struggles with severe dysarthria, achieving 0% accuracy,
and its overall performance is the lowest at 65.16%, despite performing well for moderate (100%)
and mild (95.50%) cases. These results highlight CNN’s superior generalization and robustness,
while CRNN shows good potential with some variability, and RNN faces significant challenges,
especially with severe cases.

3. CONCLUSION

This study employs supervised learning, leveraging labeled data to train a model capable of learning
from examples, to address vocal pathology detection and dysarthria classification. The results
highlight the effectiveness of this approach in developing accurate detection and classification
systems. The experiments demonstrated that incorporating multiple acoustic parameters
significantly improved detection performance, with the RNN achieving an impressive accuracy of
over 99%. However, for classifying dysarthria severity, the RNN was surpassed by CRNN and
CNN, which achieved accuracy rates of 96% and 99%, respectively. Ultimately, the study
successfully developed a reliable model for vocal pathology detection, with future work aiming to
enhance pathological voice recognition further.
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