Reconnaissance Des Commandes Vocales D'un Robot Mentor Dans Un Environnement Bruite A Base Hmm

Main Article Content

Fatima Khenfer Koummich
Larbi Mesbahi
Fatiha Hendel

Abstract

This article presents a basic application on the Markov cache models (HMM -Hidden Markov Model-), applying to the mots of command type robot. But it is permissible for an operator to command a robot mentor to execute touch screens of the type of tourer, editor or fermer, etc. This touch can be used to calculate different areas of the environment. This will be applied to the isolated mots that respond to robot commands in different languages: French and Arabic. The reconnaissance text appears in the same languages as the new parole. Néanmoins, it is a different language that makes a profit from the Arabic language when a white bruit is eaten, with a Rapport Signal in Bruit (RSB) that is equal to 30dB, on the next page of reconnaissances of 69% and 80% in French. And the Arabs respectively. This can be expanded by the context phone capacity of the language to contain the influence of the environment.

Article Details

How to Cite
Khenfer Koummich, F., Mesbahi, L., & Hendel, F. (2014). Reconnaissance Des Commandes Vocales D’un Robot Mentor Dans Un Environnement Bruite A Base Hmm. AL-Lisaniyyat, 20(1), 9-17. https://doi.org/10.61850/allj.v20i1.498
Section
Articles

References

[1] Gallardo-Estrella, L. and Poncela, A. “Human/Robot Interface for Voice Teleoperation of a Robotic Platform”, Springer-Verlag Berlin Heidelberg, 2011 [2] Ben Fredj, L and Ouni, K., “Optimization of Features Parameters for HMM Pho- neme Recognition of TIMIT Corpus”, In- temational Conference on Control, Engi- neering & Information Technology (CEIT’13). Vol.2, pp. 90-94, 2013. [3] Umesh, S, “Studies on inter-speaker var- iability in speech and its application in automatic speech recognition”, Sadhana Vol. 36, Part 5, October 2011, pp. 853— 883.© Indian Academy of Sciences. Bänziger, T.. Klasmeyer, G., Johnstone, T Kamceva, T. and Scherer, K. R, “Améliorer les systèmes de vérification automatique du locuteur en intégrant la variabilité émotionnelle”, XXIIèmes Journées d’Etude sur la Parole, Aussois, 19-23 juin 2000. [5] Rabiner, L. and Juang. B..’Fundamentals of Speech Recognition”, PTR Prentice Hall (Signal Processing Series), Eng- lewood Cliffs NJ, 1993, ISBNO-13- 01515 Kevin, J., Lang, À. and Waibel, “A Time Delay Neural Network Architecture for Isolated Word Recognition”, Neural Networks, Vol. 3, pp. 23-43, 1990. Heidaria, H. and Gobeeb, S., “Isolated Word Command Recognition for Robot Navigation”, International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012), sciencedirect, Procedia En- gineering 41 (2012 ) 412 - 419. [8] Ferre M. Macias-Guarasa, J… Aracil Raand Barientos A.” Voice command generator for teleoperated robot systems.” In Proceedings of the IEEE ROMAN 1998, Takamatsu, Japan 1998. [9] Dragon Naturally Speaking de Nuance. http:/Avww.nuance.f/Dragon! 2. [10] Juang, B. H. and Rabiner, L. R., “Hidden Markov Models for Speech Recognition”, Technometries is currently published by
[4
[6
[
Reconnaissance des commandes vocales d’un robot mentor
American Statistical Association, Technometrics, Vol. 33, No. 3. (Aug.. 1991), pp. 251-272. [11] Rabiner, L. R, “A Tutorial on Hidden Markov Models and selected applications in speech recognition”, Proceedings of IEEE, Vol. 77, N°2, p 286, Feb. 1989. [12] Young, S, Evermann, G. Kershaw, D, Moore, D., Odell, J., Ollason, D.. Valtchev, V. and Woodland, P. “The HTK Book (for HTK version 3.4)”. Cam- bridge University Engineering Depart- ment, December 2006. http://htic.eng.cam-ac.uk. [13] The DARPA TIMIT Acoustic-phonetic Continuous Speech Recognition Database CDROM, NIST, 1990. [14] http://www.speech.kth.se/