التعرف على الكتابة اليدوية باللغة العربية باستخدام الشبكات العصبية

##plugins.themes.bootstrap3.article.main##

أ. مناصرية
أ. بنيا

الملخص

نحن نقدم نظام التعرف على الكتابة باللغة العربية مخصص للقراءة التلقائية للمبالغ الحرفية للشيكات المكتوبة باللغة العربية الطويلة. في هذا العمل، نقدم نارًا جديدة من البدائيات لتوصيف الكلمات الكمية. يتمحور النظام المطور حول أربع وحدات متميزة. وحدة الاستحواذ، وحدة المعالجة المسبقة. وحدة استخراج بدائية ووحدة التعرف (التصنيف والقرار). هذا الأخير هو المصنف العصبي. النتائج التي تم الحصول عليها على قواعد البيانات المستخدمة واعدة.

##plugins.themes.bootstrap3.article.details##

كيفية الاقتباس
مناصريةأ., & بنياأ. (2013). التعرف على الكتابة اليدوية باللغة العربية باستخدام الشبكات العصبية. AL-Lisaniyyat, 19(1), 28-37. https://doi.org/10.61850/allj.v19i1.477
القسم
Articles

المراجع

[1] N. Benamara and N. Ellouze, A Robust approach for Arabic printed character segmentation,
Proc. 3* International Conference on Document Analysis and Recognition (ICDAR'95),
pp.865-868, Montreal, Canada, 1995.
[2] C. Olivier, H. Miled, K. Romeo and Y. Lecourtier, “Segmentation and coding of arabic
handwritten words”, Proc. 13* International Conference on Pattern Recognition (ICPR'96), pp.
264-268, Vienne, Autriche, 1996.
[3] S. Snoussi-Maddouri, H. Amiri, A. Belaid and C. Choisy.Combination of local and global
vision modelling for Arabic handwritten word recognition, International Workshop Frontier in
Handwriting (IWFHR02),Canada.2002.
[4] O. Hachour. Reconnaissaance hybride des caractéres Arabes imprimé, JEP-TALN 2004,
Traitement Automatique de l’Arabe, Frés, 2004.
[5] W. Kammoun and A. Ennaji. Reconnaissance de textes Arabes à vocabulaire ouvert,
Laboratoire Perception, Système, Information (PSI) FRE-CNRS 2645, Université de Rouen
76821 Mont Saint Aignan Cedex, France.
[6] Y. Al-Ohalia, M. Cheriet and B. C. Suena, “Databases for recognition of _ handwritten Arabic
cheque”, Pattern Recognition, 36 (2003), pp. 111-121.
[7] D. .S. Alceu. J. R. Britto, R. Sabourin, F. Bortolozzi and C. Y. Suen. The recognition of
handwritten numeral strings using a two-stage HMM-based method, 11JDAR (2003) 5: 102-
117.
[8] S. Snoussi-Maddouri, H. Amiri, A. Belaid et C. Choisy. Combination of local and global vision
modelling for Arabic handwritten words recognition, in : Eighth International Workshop on
Frontiers in Handwriting Recognition - l'WFHR°02, Ontario, Canada, 2002.
[9] A. S. Britto. R. Sabourin. F. Bortolozzi and C. Y Suen.. 4 nwo-stage HMM-based systems for
recognizing handwritten numeral strings, Proceedings of the International Conference on
Document Analysis and Recognition (ICDAR01), pp. 396-400, Seattle, USA, September 2001.
[10] J. H. Kim, K. K. Kim, C. P. Nadal, C. Suen.4 methodology of combining HMM and MLP
classifiers for cursive word recognition, In proceedings of ICPR'2000, vol. 2, pp. 319-322,
Barcelona-Spain,2000.
[11]A. Koerich, Y. Leydier, R. Sabourin, C.Y. Suen.. Système hybride de reconnaissance de mots
manuscrits sur un grand vocabulaire utilisant des réseaux neuronaux et des modèles de Markov
Cachés, CIFED. Volume X- n° X/2002.
[12] M. Blumenstein and B. Verma. A Segmentation Algorithm used in Conjunction with Artificial
Neural Networks for the Recognition of Real-World Postal Addresses, ICCIMA'97, Australia.
[13] N. Benamara, A. Belaid and N. Ellouze.Urilisation des modèles markoviens en reconnaissance
de l'écriture arabe : Etat de l'art, Colloque International Francophone sur l'Ecrit et le
Document (CIFED'00), Lyon, juillet 2000.
[14] H. Miled, M. Cheriet, C. Olivier and Y. Lecourtier. Modélisation markovienne de l'écriture
arabe manuscrite: une approche analytique, Proc. Colloque international francophone sur l'écrit
et le document (CIFED'98), pp. 50-59.Québec, Canada, 1998.
[15] S. Snoussi-Maddouri, A. Belaid, C. Choisy and H. Amiri,. Modèle perceptif neuronal à vision
globale-locale pour la reconnaissance de mots manuscrits arabes, in : Conference
Internationale Francophone sur l’Ecrit et le Document - CIFED 2002,
[16] A. Belaid et Y. Belaid. Reconnaissance des formes : méthodes et applications, InterEditions,
France, 1992.
[17] T. Pavlidis, Structural pattern recognition, Springer-Verlag, 1977.
[18] M. Kunt, Reconnaissance des formes et analyse de scènes, Presses Polytechniques et
Universitaires Romandes, Lausanne, 2000.
[19] P. Leroy. Reconnaissance d'écriture manuscrite dynamique par approche descendante —
caractérisation du style de l'écriture et application, Thèse de Doctorat, Université de Rennes 1,
avril 1997.
[20] E. Marisa. Automatic recognition of handwritten dates on brazilian bank cheques, Thèse de
Doctorat, Ecole de Technologie Supérieure, Université du Québec, 2003.
[21] A. Koerich. Large vocabulary off-line handwritten word rocognition, Thèse de Doctorat,
Ecole de Technologie Supérieure, Université du Québec, 2002.
[22] M. Cheriet and C. Y. Suen. Un système neuro-flou pour la reconnaissance de montants
numériques de cheques arabe, Pattern Recognition letters 14(1993), pp. 1009-1017.
[23]E. Davalo et P.Naim, Des réseaux de neurones , Editions Eyrolles, France 1993.